REFLECTION-MODE PHOTOPLETHYSMOGRAPHY FINGER SENSORS ENABLE ACCURATE TRACKING OF BLOOD PRESSURE TRENDS IN SMARTPHONES WITHOUT REQUIRING A USER CALIBRATION

Presenting Author: Dr. Steven F. LeBoeuf

Additional authors: Dr. Chris Eschbach, Tushar Tank, Dr. Ryan Hodges, Dr. Namita Lokare, Dr. Steven Hauser, Nicki Moncourtois

Valencell, Inc., Raleigh, NC

BACKGROUND

Daily self-monitoring of blood pressure (BP) is widely recognized as a cost-effective method to identify and manage hypertension in conjunction with physician-prescribed interventions. However, few American households own a BP monitor and even less comply with daily monitoring, in part due to annoyances associated with porting and properly donning a BP cuff. The purpose of this study was to demonstrate the accuracy of a cuff-less BP monitoring technology, based upon photoplethysmography (PPG), embedded within a finger sensor that can be integrated within a smartphone, smartwatch, kiosk, and finger-clip.

METHODS

A training dataset was collected from BP measurements on 4072 participants in 3 sequential readings: a manual auscultatory reading, an automated oscillometric cuff reading, and at least one PPG reading from a commercial PPG sensor configured to monitor reflection-mode PPG from the finger (Figs 1 & 2). With the manual readings serving as "ground truth", a machine learning model for finger-PPG BP (FPBP) was trained to predict both systolic and diastolic BP based solely on finger-PPG sensor data. An unbiased accuracy assessment of the trained FPBP model was generated by statistical analysis of the model's BP predictions for a test dataset (Fig. 3) of 82 participants, collected via the ISO 81060-2:2018 standard. This test dataset comprised data from participants who were not used in training the FPBP model, providing a true unbiased assessment.

RESULTS

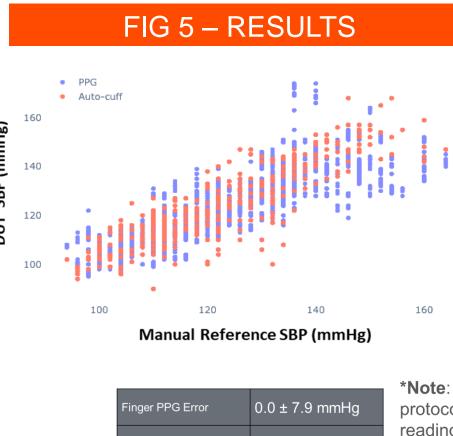
When compared with the manual auscultatory blood pressure readings, the accuracy of the FPBP model was found to be within 0 ± 7.9 mmHg and 0.4 \pm 7.4 mmHg for systolic blood pressure (SBP) and diastolic blood pressure (DBP) respectively. Similarly, the accuracy of the oscillometric cuff (auto-cuff) was found to be within -1.9 \pm 8.0 mmHg and 2.3 \pm 6.5 mmHg for SBP and DBP, respectively.

CONCLUSION

Although the FPBP solution demonstrated slightly less precision than that of an oscillometric cuff for DBP, the accuracy for both SBP and DBP was found to be sufficiently cuff-like and suitable for accurately predicting longitudinal BP trends and for assessing hypertension status (Fig. 4).

A smart, calibration-free **PPG-based finger sensor** can accurately monitor BP in smartphones, smartwatches, kiosks, and finger-clips without the need for a cuff

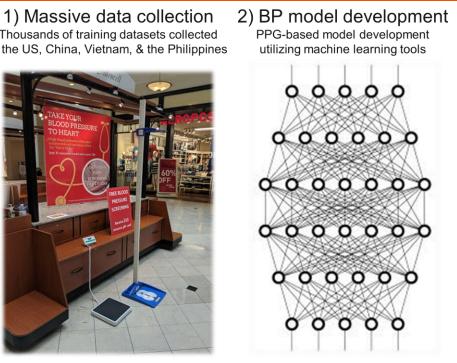
For more information, scan the QR code, go to www.valencell.com, or email info@valencell.com


Dr. Steven F. LeBoeuf – leboeuf@valencell.com

housands of training datasets collected

FIG 2 – TRAIN	IING DA	TASET
# of Unique Tests:	7,889	
# or Unique Participants:	4,072	
Gender:	Count	Percentage
Female	2,284	56%
Male	1,795	44%
Smoker:	Count	Percentage
No	3,729	91%
Yes	350	9%
BP Medication(s):	Count	Percentage
No	3,042	75%
Yes	1,037	25%

	Mean ± SD	Range	Units
Age	45 ± 19	18 - 100	Years
BMI	27 ± 6	10 - 60	N/A
Systolic BP	123 ± 20	80 - 220	mmHg
Diastolic BP	75 ± 12	32 - 134	mmHg



DISCUSSION

The ultimate purpose of this R&D program was to develop and validate the world's first commercially viable cuff-less, calibration-free, all-PPG BP monitoring solution that could ultimately: 1) provide demonstrable public health value,

2) provide cuff-like accuracy in a general population, and 3) be integrated within existing popular consumer form-factors. Both objectives were achieved. Moreover, it was found that the FPBP solution was able to categorize hypertension status with cuff-like accuracy (Fig. 4).

FIG 1 - METHODS

Proving generalization Model applied to a test dataset

 Embedded solutior Software integrated within Valencell's

Fig. 1: Valencell developed and validated a novel machine learning model, based on PPG datasets collected from thousands of unique participants, to estimate BP via finger PPG.

PPG Error	0.0 ± 7.9 mmHg
uff Error	-1.9 ± 8.0 mmHg

***Note**: In the ISO testing protocol, manual auscultato readings are considered to be "ground truth"

	Manual Reference DBP (mmHg)			
ory	Finger PPG Error	0.4 ± 7.4 mmHg		
	Auto Cuff Error	23+65 mmHa		

DISCLOSURE INFORMATION

*All authors are employed by Valencell, Inc.: <u>valencell.com/patents</u>

FIG 3 – TEST DATASET

Total # of Measures	347
Total # of Participants	82
Percent on BP Medication	27%
Percent Male/Female	45% / 55%
Number of SBP ≤ 100	21
Number of SBP ≥ 160	5
Number of SBP ≥ 140	53
Number of DBP ≤ 60	38
Number of DBP ≥ 100	12
Number of DBP ≥ 85	74

FIG 4 – HYPERTENSION STATUS

	Finger PPG	Auto-cuff
Accuracy (SBP ≥ 130 mmHg)	90%	89%
Precision (SBP ≥ 130 mmHg)	90%	89%
Sensitivity (SBP ≥ 130 mmHg)	90%	88%
SBP Error ≤ 10 mmHg	83%	76%
DBP Error ≤ 10 mmHg	82%	83%
Fig. 1: The EDBD colution can accurately		

Fig. 4: The FPBP solution can accurately assess hypertension status (SBP \geq 130 mmHg).